

1

Docker & AnsibleForms

1 CONTENT

DOCKER ... 2

What is docker ... 2

Docker commands ... 2

docker run ... 3

docker ps ... 4

docker rm .. 4

docker image ls .. 5

docker image rm .. 5

ALIASES .. 6

docker exec .. 6

docker exec -it ... 7

Application docker images and AnsibleForms .. 10

Docker compose .. 11

docker-compose.yml ... 11

docker-compose up ... 14

docker-compose up -d ... 14

docker-compose down .. 14

Upgrading AnsibleForms ... 15

Cleaning up .. 15

2

2 DOCKER

2.1 WHAT IS DOCKER
Docker is an application to run virtual machines from a command line.

Such a virtual machine is called a docker container.

The difference with VMware is that a container loses all the changes that were made to moment it gets updated or redeployed. That means we need a

mechanism to make the data persistent. Using mounts from the mother-OS or external storage (NFS mounts) we can make changes and data persistent.

The cool part about this is that data and code is 100% separated, making updates and backups extremely easy.

A docker container uses a docker image and is essentially an operating system, running on top of the mother OS. However with docker, the footprint is a lot

smaller.

You will see that the words image and container are easily mixed. The image is however the source, the container is a containerized version of the image.

But in terms of talking, we will probably mix them and say, “start an image”, “stop an image” while it’s essentially “stop a container from an image”.

2.2 DOCKER COMMANDS
Docker itself is a command (docker) and has a couple of subcommands

- run : run a docker image

- start : start a docker image

- stop: stop a docker container

- image : interact with docker images

- ps : show docker containers (running and stopped)

- logs : show docker logs

- rm : remove a container

- inspect : show docker container details

- pull : download a docker image from docker hub (=dockers repo)

3

2.2.1 docker run

This is the most basic action : it will download (if needed) the image, start a container, run a command, and stop the container after the command is

finished.

[root@mother-OS]# docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

Another very small docker image to play with is busybox. It’s a 4MB!! linux operating system with a bunch of utilities.

[root@mother-OS]# docker run busybox echo "hello from busybox"
Unable to find image 'busybox:latest' locally

latest: Pulling from library/busybox

809d8e20e203: Pull complete

4

Digest: sha256:2376a0c12759aa1214ba83e771ff252c7b1663216b192fbe5e0fb364e952f85c

Status: Downloaded newer image for busybox:latest

hello from busybox

Can you imagine this ? it downloaded the latest version of busybox, started the operating system, asked to run the echo command and stopped the

operating system. Probably in 1ms !!

Important to realize is that docker images are NOT getting cleaned up, they are stopped but remain on the mother-OS.

2.2.2 docker ps

[root@mother-OS]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Now the ps subcommand only shows running containers, however -a shows us all containers that are present

[root@mother-OS]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

21e09db3d18c busybox "echo 'hello from bu…" 10 minutes ago Exited (0) 10 minutes ago
strange_maxwell

a9da69b129bd hello-world "/hello" 12 minutes ago Exited (0) 12 minutes ago

exciting_fermat

you see that the hello-world and busybox containers are still there. Also notice that if a container is not given a specific name (option -name), docker

gives it funny names like strange_maxwell and exciting_fermat (in red). It’s easy to type and to spot.

This allows us to remove the container with a name. Note you can also use the container id (in blue)

2.2.3 docker rm

We can now remove the docker containers

5

[root@mother-OS]# docker rm 21e09db3d18c
21e09db3d18c
[root@mother-OS]# docker rm exciting_fermat
exciting_fermat
[root@mother-OS]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

the containers are removed (once using id and once using name)

2.2.4 docker image ls

docker image command interacts with the images. Above we removed the containers, but the images are still there.

[root@mother-OS]# docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
busybox latest 5242710cbd55 2 weeks ago 4.26MB

ansibleguy/AnsibleForms beta 658ca0436736 4 weeks ago 1.33GB

ansibleguy/AnsibleForms <none> 119d2219309d 4 weeks ago 1.33GB

ansibleguy/AnsibleForms latest 13fd9e094f06 5 weeks ago 1.33GB

mysql 5.7 8aea3fb7309a 3 months ago 455MB

mcr.microsoft.com/mssql/server 2019-latest 4885f6112d74 10 months ago 1.47GB

hello-world latest feb5d9fea6a5 21 months ago 13.3kB

karelverhelst/AnsibleForms latest 4c6a8d75a0b3 23 months ago 177MB

mariadb latest fd17f5776802 23 months ago 409MB

busybox latest c7c37e472d31 3 years ago 1.22MB

netapp/trident 20.04.0 b5c3b90f1b51 3 years ago 141MB

2.2.5 docker image rm

To remove an image, use rm

[root@mother-OS]# docker image rm 5242710cbd55

6

Untagged: busybox:latest

Untagged: busybox@sha256:2376a0c12759aa1214ba83e771ff252c7b1663216b192fbe5e0fb364e952f85c

Deleted: sha256:5242710cbd55829f6c44b34ff249913bb7cee748889e7e6925285a29f126aa78

Deleted: sha256:feb4513d4fb7052bcff38021fc9ef82fd409f4e016f3dff5c20ff5645cde4c02

2.2.6 ALIASES

docker also uses aliases to make life easier, below 2 examples

docker images => docker image ls

docker rmi => docker image rm

[root@mother-OS]# docker rmi feb5d9fea6a5
Untagged: hello-world:latest

Untagged: hello-world@sha256:4e83453afed1b4fa1a3500525091dbfca6ce1e66903fd4c01ff015dbcb1ba33e

Deleted: sha256:feb5d9fea6a5e9606aa995e879d862b825965ba48de054caab5ef356dc6b3412

Deleted: sha256:e07ee1baac5fae6a26f30cabfe54a36d3402f96afda318fe0a96cec4ca393359

[root@mother-OS]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

ansibleguy/AnsibleForms beta 658ca0436736 4 weeks ago 1.33GB

ansibleguy/AnsibleForms <none> 119d2219309d 4 weeks ago 1.33GB

ansibleguy/AnsibleForms latest 13fd9e094f06 5 weeks ago 1.33GB

mysql 5.7 8aea3fb7309a 3 months ago 455MB

mcr.microsoft.com/mssql/server 2019-latest 4885f6112d74 10 months ago 1.47GB

karelverhelst/AnsibleForms latest 4c6a8d75a0b3 23 months ago 177MB

mariadb latest fd17f5776802 23 months ago 409MB

busybox latest c7c37e472d31 3 years ago 1.22MB

netapp/trident 20.04.0 b5c3b90f1b51 3 years ago 141MB

2.2.7 docker exec

Once a docker container is running a longer process (i.e. running a service application) you can still ask it to execute tasks, using the exec subcommand

7

[root@mother-OS]# docker exec AnsibleForms-docker_mysqldb_1 ls
bin

boot

dev

docker-entrypoint-initdb.d

entrypoint.sh

2.2.8 docker exec -it

More interesting is to interact with the container directly, using -it (interactive terminal)

[root@mother-OS]# docker exec -it AnsibleForms-docker_mysqldb_1 /bin/bash
bash-4.2# mysql -u root -p

mysql: [Warning] World-writable config file '/etc/mysql/my.cnf' is ignored.
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 18

Server version: 5.7.41 MySQL Community Server (GPL)

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases

 -> ;

+--------------------+

| Database |

+--------------------+
| information_schema |

8

| AnsibleForms |

| mysql |

| performance_schema |

| sys |

+--------------------+

5 rows in set (0.01 sec)

mysql>

NOTE : we execute the bash-shell. /bin/bash

NOTE 2 : For containers based on the alpine linux base (like Ansible Forms), the shell is /bin/ash

[root@mother-OS]# docker exec -it AnsibleForms-docker_app_1 /bin/ash
/app #

/app # cd dist/persistent

/app/dist/persistent # cd playbooks

/app/dist/persistent/playbooks # ansible-playbook dummy.yaml

[WARNING]: No inventory was parsed, only implicit localhost is available

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit localhost does not
match 'all'

PLAY [This is a hello-world example]

TASK [Gathering Facts]

ok: [localhost]

9

TASK [Output 'Welcome'.]

ok: [localhost] => {

 "msg": "Hi there and welcome to ansible"

}

PLAY RECAP

localhost : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

/app/dist/persistent/playbooks #

As you can see, the AnsibleForms container is fully equipped with ansible

you can run a playbook even in 1 command using the container

[root@mother-OS]# docker exec AnsibleForms-docker_app_1 ansible-playbook ./dist/persistent/playbooks/dummy.yaml
[WARNING]: No inventory was parsed, only implicit localhost is available
[WARNING]: provided hosts list is empty, only localhost is available. Note that

the implicit localhost does not match 'all'

PLAY [This is a hello-world example] ***

TASK [Gathering Facts] ***
ok: [localhost]

TASK [Output 'Welcome'.] ***

ok: [localhost] => {

 "msg": "Hi there and welcome to ansible"

}

10

PLAY RECAP ***

localhost : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

[root@worker-node2 playbooks]#

3 APPLICATION DOCKER IMAGES AND ANSIBLEFORMS

For now, we only played with containers that execute a single task and then stop. (docker run)

But real-life docker images have an entry-point that is a running service. As long as that service runs, the docker container stays up.

In the example of AnsibleForms, the docker image will start the web application (node js express), and to successfully do that, the application needs a lot of

information.

For starters, it needs to know where the database is and how to connect to it, do we run http or https, where are the certificates, ... We do that by passing

environment-variables.

docker run ansibleguy/AnsibleForms:latest -e VAR1=value1 -e VAR2=value2,
In the documentation you can see all possible environment variables, and I encourage you to have a look at them, as it might answer some questions you

might already have.

https://ansibleforms.com/customization/

You can also assign volume mappings (-v) and port mappings (-p). This way you can connect parts of the mother-OS to the docker container. You can

mount directories and files from the mother-OS into the container and export ports to the mother-OS. This way a docker container can run a web

application that is accessible from outside the mother-OS. Note that the port internally in the docker image can be different that the port exposed on the

mother-OS.

So AnsibleForms could be started this way, using a long docker run command passing all the environment variables, folder-mounts and port-mapping. But

why stop here. Since AnsibleForms also needs a database, why not run the database as a container too.

https://ansibleforms.com/customization/

11

But the database would again need environment variables like the root password. By now, you start realizing that spinning up containers running actual

real-life applications, become long commands to enter. So why not use a configuration file, that nicely summarize all these port mappings, volume mounts

and environment variables.

That’s why they invented docker-compose.

4 DOCKER COMPOSE

the docker command interacts with 1 specific container. Real-life docker applications require a lot more parameters to start. Also, an application can

consist out of more than 1 container and perhaps these containers have dependencies and internal interactions.

Docker compose allows us to describe a multi-container configuration.

Let’s have a look at the docker-compose file for AnsibleForms.

You can download the docker-compose project from GitHub. Follow the instructions here : https://github.com/ansibleguy76/ansibleforms-docker

4.1 DOCKER-COMPOSE.YML
version: '3.0'

services:

 # MySql Server

 mysqldb:

 image: mysql:5.7

 restart: unless-stopped

 # load extra environment variables from file

 env_file: ./.env

 # Set manual environment variables

 environment:

 - MYSQL_ROOT_PASSWORD=$MYSQLDB_PASSWORD

 - MYSQL_DATABASE=AnsibleForms

https://github.com/ansibleguy76/ansibleforms-docker

12

 ports:

 # Mount host port to docker internal port

 - $MYSQLDB_LOCAL_PORT:$MYSQLDB_DOCKER_PORT

 volumes:

 # Map database location (to maintain persistency)

 - ./data/mysql/db:/var/lib/mysql

 # Map my.cnf file (to maintain persistency)

 - ./data/mysql/my.cnf:/etc/mysql/my.cnf

 # Map init sql scripts

 - ./data/mysql/init:/docker-entrypoint-initdb.d

 # AnsibleForms application

 app:

 # Only start after MySql

 depends_on:

 - mysqldb

 image: ansibleguy/ansibleforms:latest

 restart: unless-stopped

 ports:

 # Mount host port to docker internal port

 - $WEBAPP_LOCAL_PORT:$WEBAPP_DOCKER_PORT

 # Load extra environment variables from file

 env_file:

 - ./.env

 # Set environment variables

 environment:

 - DB_HOST=mysqldb

 - DB_USER=$MYSQLDB_USER

 - DB_PASSWORD=$MYSQLDB_PASSWORD

 - DB_PORT=$MYSQLDB_DOCKER_PORT

 - PORT=$WEBAPP_DOCKER_PORT

 # allow interactive shell

13

 stdin_open: true

 # allow terminal

 tty: true

 volumes:

 # Mount application folder to host folder (to maintain persistency)

 - ./data:/app/dist/persistent

 # Mount images folder to host folder (to have custom images)

 - ./data/images:/app/dist/views/assets/images

 # Mount logo (to have custom logo)

 #- ./data/images/mylogo.svg:/app/dist/views/assets/img/logo_ansible_forms_full_white.svg

 # Mount background image

 #- ./data/bg.jpg:/app/dist/views/assets/img/bg.jpg

 # Map custom functions for js expressions and jq

 - ./data/functions/custom.js:/app/dist/src/functions/custom.js

 - ./data/functions/jq.custom.definitions.js:/app/dist/src/functions/jq.custom.definitions.js

 # Map custom sshkey to local node .ssh location

 - ./data/ssh:$HOME_DIR/.ssh

 - ./data/git/.gitconfig:$HOME_DIR/.gitconfig

Let’s deep dive into this yaml file. You can see it contains 2 docker containers (services)

- mysqldb : MySQL 5.7

- app : AnsibleForms

Each service has a few basic sub sections :

- image : the docker image to run

- env_file & environment : the variables to load and set

- ports : port mappings (outside-port : inside-port)

- volumes : directory and file mapping (outside-path : inside-path)

The docker-compose project that you download from my GitHub repo is just a starter project. Feel free to adjust and set more environment variables.

14

NOTE : the docker-compose.yml file refers to an exteran .env file. The .env file contains the customer environment variables, include the database

password. With docker compose that’s about the most secure you can get to define a password. By loading it from the .env file, you can secure the .env

file and by loading it from file, the content is not revealed in logs.

NOTE 2 : if you want to encrypt passwords you need to move away from docker-compose and move to docker swarm or Kubernetes, which have the option

to create secrets (docker secret create)

4.2 DOCKER-COMPOSE UP
From within the directory where your docker compose file is (docker-compose.yml) , you can start with the command docker-compose up, however,

you will see that this is in “interactive” mode, this is nice for debugging, but is not what you want.

4.3 DOCKER-COMPOSE UP -D
Run docker-compose up -d to start in detached mode.

[root@mother-os]# docker-compose up -d
Starting ansibleforms-docker_mysqldb_1 ... done
Starting ansibleforms-docker_app_1 ... done
[root@mother-os]#

4.4 DOCKER-COMPOSE DOWN
Run docker-compose down to stop

[root@mother-os]# docker-compose down
Stopping ansibleforms-docker_app_1 ... done
Stopping ansibleforms-docker_mysqldb_1 ... done
Removing ansibleforms-docker_app_1 ... done
Removing ansibleforms-docker_mysqldb_1 ... done
Removing network ansibleforms-docker_default

15

5 UPGRADING ANSIBLEFORMS

Upgrading AnsibleForms is as simple as typing these 3 commands.

[root@mother-os]# docker pull ansibleguy/ansibleforms:latest
[root@mother-os]# docker-compose down
[root@mother-os]# docker-compose up -d

6 CLEANING UP

Note that when you have upgraded ansibleforms, the older version is still on your system. Use the command your learned earlier to cleanup older versions

(docker image rm or docker rmi)

